Nonpathogenic strains of Colletotrichum lindemuthianum trigger progressive bean defense responses during appressorium-mediated penetration.

نویسندگان

  • Claire Veneault-Fourrey
  • Richard Laugé
  • Thierry Langin
چکیده

The fungal bean pathogen Colletotrichum lindemuthianum differentiates appressoria in order to penetrate bean tissues. We showed that appressorium development in C. lindemuthianum can be divided into three stages, and we obtained three nonpathogenic strains, including one strain blocked at each developmental stage. H18 was blocked at the appressorium differentiation stage; i.e., no genuine appressoria were formed. H191 was blocked at the appressorium maturation stage; i.e., appressoria exhibited a pigmentation defect and developed only partial internal turgor pressure. H290 was impaired in appressorium function; i.e., appressoria failed to penetrate into bean tissues. Furthermore, these strains could be further discriminated according to the bean defense responses that they induced. Surprisingly, appressorium maturation, but not appressorium function, was sufficient to induce most plant defense responses tested (superoxide ion production and strong induction of pathogenesis-related proteins). However, appressorium function (i.e., entry into the first host cell) was necessary for avirulence-mediated recognition of the fungus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of green fluorescent protein to detect expression of an endopolygalacturonase gene of Colletotrichum lindemuthianum during bean infection.

The 5' noncoding region of clpg2, an endopolygalacturonase gene of the bean pathogen Colletotrichum lindemuthianum, was fused to the coding sequence of a gene encoding a green fluorescent protein (GFP), and the construct was introduced into the fungal genome. Detection of GFP accumulation by fluorescence microscopy examination revealed that clpg2 was expressed at the early stages of germination...

متن کامل

A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. .

Random insertional mutagenesis was conducted with the hemibiotrophic fungus Colletotrichum lindemuthianum, causal agent of common bean anthracnose. Nine mutants that were altered in their infection process on the host plant were generated. One of these, H433 is a nonpathogenic mutant able to induce necrotic spots on infected leaves rapidly. These spots are similar to those observed during the h...

متن کامل

Variability of Colletotrichum spp in common bean.

The Colletotrichum genus presents large genetic variability, as demonstrated by the occurrence of several pathogenic races and phenotypic traits. The objective of this study was to characterize 22 strains of C. lindemuthianum and Colletotrichum spp recovered from anthracnose lesions and bean scab, and to verify the relationship between species of the Colletotrichum genus, which inhabit anthracn...

متن کامل

Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response ...

متن کامل

Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses.

The rice blast fungus, Magnaporthe grisea, generates enormous turgor pressure within a specialized cell called the appressorium to breach the surface of host plant cells. Here, we show that a mitogen-activated protein kinase, Mps1, is essential for appressorium penetration. Mps1 is 85% similar to yeast Slt2 mitogen-activated protein kinase and can rescue the thermosensitive growth of slt2 null ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 8  شماره 

صفحات  -

تاریخ انتشار 2005